机器人课程可以帮助您学习机器人控制编程、传感器集成和机械设计原理。您可以掌握自动化、系统故障排除和算法开发等技能,以完成导航和物体识别等任务。许多课程都会介绍一些工具,如 ROS(机器人操作系统)、用于设计的 CAD 软件以及可让您在虚拟环境中测试机器人系统的仿真平台。

您将获得的技能: Spatial Data Analysis, Robotics, Artificial Intelligence, Data Manipulation, Simulations, NumPy
高级设置 · 指导项目 · 不超过 2 小时

您将获得的技能: Model Evaluation, Keras (Neural Network Library), Tensorflow, Image Analysis, Artificial Neural Networks, Deep Learning, Computer Vision, Machine Learning, Classification Algorithms
初级 · 指导项目 · 不超过 2 小时

您将获得的技能: Data Visualization, Keras (Neural Network Library), Data Preprocessing, Artificial Neural Networks, Interactive Data Visualization, Predictive Modeling, Tensorflow, Applied Machine Learning, Feature Engineering, Data Science, Predictive Analytics, Data Manipulation, Machine Learning, Model Evaluation, Regression Analysis, Python Programming
初级 · 指导项目 · 不超过 2 小时

Coursera
您将获得的技能: Tensorflow, Keras (Neural Network Library), Data Synthesis, Convolutional Neural Networks, Image Analysis, Computer Vision, Artificial Neural Networks, Model Evaluation, Applied Machine Learning, Deep Learning, Machine Learning, Python Programming
中级 · 指导项目 · 不超过 2 小时

您将获得的技能: Tensorflow, Convolutional Neural Networks, Image Analysis, Python Programming, Jupyter, Artificial Neural Networks, Deep Learning, Software Visualization, Machine Learning
中级 · 指导项目 · 不超过 2 小时

您将获得的技能: Regression Analysis, Exploratory Data Analysis, Model Evaluation, Scikit Learn (Machine Learning Library), Supervised Learning, Applied Machine Learning, Machine Learning, Data Preprocessing, Deep Learning, Statistical Analysis, Data Analysis, Artificial Neural Networks, Data Import/Export, Matplotlib, Python Programming
初级 · 指导项目 · 不超过 2 小时

您将获得的技能: Model Evaluation, Keras (Neural Network Library), Data Preprocessing, Deep Learning, Artificial Neural Networks, Tensorflow, Applied Machine Learning, Feature Engineering, Predictive Modeling, Data Cleansing, Machine Learning, Real Estate, Regression Analysis, Python Programming
初级 · 指导项目 · 不超过 2 小时

您将获得的技能: Tensorflow, Natural Language Processing, Python Programming, Machine Learning Methods, Recurrent Neural Networks (RNNs), Data Preprocessing, Artificial Neural Networks, Machine Learning, Deep Learning
中级 · 指导项目 · 不超过 2 小时

您将获得的技能: Exploratory Data Analysis, Model Evaluation, Data Preprocessing, Regression Analysis, Applied Machine Learning, Scikit Learn (Machine Learning Library), Data Analysis, Matplotlib, Random Forest Algorithm, Machine Learning, Data Visualization, Decision Tree Learning, Artificial Neural Networks, Deep Learning, Python Programming
初级 · 指导项目 · 不超过 2 小时

您将获得的技能: Artificial Neural Networks, Data Visualization, Exploratory Data Analysis, Data Presentation, Applied Machine Learning, Classification Algorithms, Machine Learning Methods, Predictive Modeling, Deep Learning, Classification And Regression Tree (CART), Data Analysis, Predictive Analytics, Machine Learning Algorithms, Model Evaluation, Machine Learning, Feature Engineering, Python Programming
初级 · 指导项目 · 不超过 2 小时

您将获得的技能: Keras (Neural Network Library), Artificial Neural Networks, Applied Machine Learning, Deep Learning, Python Programming, Performance Tuning, Machine Learning Algorithms, Machine Learning
中级 · 指导项目 · 不超过 2 小时

您将获得的技能: Embeddings, PyTorch (Machine Learning Library), Artificial Neural Networks, Image Analysis, Deep Learning, Applied Machine Learning, Convolutional Neural Networks, Computer Vision
高级设置 · 指导项目 · 不超过 2 小时
Operator 是一个多学科领域,它将工程学、计算机科学和技术相结合,用于设计、制造和操作机器人。这些机器可以自主或半自主地执行任务,因此在各行各业都具有重要价值。机器人技术的重要性在于它能够在从制造业到医疗保健的各种任务中提高生产率、改善安全性并减少人为错误。随着自动化的不断发展,了解机器人技术对于适应技术进步和提高 Operator 运行效率至关重要。
从事机器人技术可为多个行业带来各种就业机会。机器人工程师、自动化技术员和研究科学家等职位很常见。此外,机器人系统的编程、系统集成和维护方面的职位也很抢手。制造业、医疗保健和物流等行业越来越依赖机器人技术,为该领域的技术人员创造了大量机会。
To succeed in robotics, you need a blend of technical and soft skills. Key technical skills include programming languages like Python and C++, knowledge of control systems, and an understanding of mechanical design. Familiarity with sensors, actuators, and artificial intelligence is also beneficial. Soft skills such as problem-solving, teamwork, and effective communication are essential, as robotics often involves collaboration across various disciplines.
对于那些对机器人技术感兴趣的人来说,有许多在线课程可供选择。其中一些最佳选择包括现代机器人学:机械学、规划与控制专项课程和Webots 机器人技术入门专项课程。这些课程涵盖基础概念和实际应用,适合不同水平的学习者。
是的,您可以通过两种方式在 Coursera 上免费开始学习机器人技术:
如果您想继续学习、获得机器人技术证书或在预览或试用后解锁全部课程访问权限,可以升级或申请经济援助。
学习机器人技术需要采取有条理的方法。首先,通过在线课程或教科书获得基础知识。参与实践项目,学以致用,如制作简单的机器人或模拟编程。加入在线社区或论坛也能为您提供支持和资源。随着学习的深入,可以考虑专攻机器人或自动化系统的 AI 等领域,以深化自己的专业知识。
要对员工进行机器人技术培训和技能提升,机器人技术与工业自动化基础和工业协作机器人技术专项课程等课程都是极佳的选择。这些课程侧重于实际应用和行业相关技能,是劳动力发展的理想选择。