筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索循环神经网络课程目录
- 状态:免费试用
DeepLearning.AI
您将获得的技能: Python 程序设计, 数据驱动的决策制定, 人工智能, 人工智能和机器学习(AI/ML), 自然语言处理, 监督学习, 机器学习算法, 应用机器学习, 人工神经网络, 调试, 计算机视觉, Keras(神经网络库), PyTorch(机器学习库), 性能调整, 功能工程, 机器学习, 文本挖掘, 张力流, 图像分析, 深度学习
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 网络架构, 监督学习, 自然语言处理, 人工智能和机器学习(AI/ML), 人工神经网络, 文本挖掘, PyTorch(机器学习库), 应用机器学习, 张力流, 深度学习
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 线性代数, 人工智能, 监督学习, 人工智能和机器学习(AI/ML), Algorithm, 自然语言处理, 降维, 机器学习算法, 人工神经网络, 数据处理, 马尔可夫模型, 概率与统计, 功能工程, Keras(神经网络库), PyTorch(机器学习库), 文本挖掘, Machine Learning 方法, 张力流, 非结构化数据, 深度学习
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 预测建模, 人工神经网络, 数据处理, 时间序列分析和预测, Keras(神经网络库), 机器学习, 张力流, Machine Learning 方法, 预测, 深度学习
- 状态:新状态:免费试用
您将获得的技能: Deep Learning, PyTorch (Machine Learning Library), Artificial Neural Networks, Artificial Intelligence and Machine Learning (AI/ML), Tensorflow, Large Language Modeling, Machine Learning, Python Programming, Algorithms, Network Architecture, Data Processing
Coursera Project Network
您将获得的技能: Python 程序设计, 生成模型架构, PyTorch(机器学习库), 图像分析, 深度学习
是什么让您今天来到 Coursera?
- 状态:预览
Sungkyunkwan University
您将获得的技能: Image Analysis, Computer Vision, Artificial Neural Networks, Natural Language Processing, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), Machine Learning
- 状态:新状态:免费试用
Pearson
您将获得的技能: Large Language Modeling, Deep Learning, Prompt Engineering, Image Analysis, PyTorch (Machine Learning Library), Tensorflow, LLM Application, Computer Vision, Responsible AI, Natural Language Processing, Generative AI, Artificial Neural Networks, Data Ethics, Multimodal Prompts, Artificial Intelligence and Machine Learning (AI/ML), Applied Machine Learning, Machine Learning Methods, Artificial Intelligence, Application Deployment, Time Series Analysis and Forecasting
- 状态:新状态:免费试用
您将获得的技能: Tensorflow, Artificial Neural Networks, Keras (Neural Network Library), Deep Learning, Time Series Analysis and Forecasting, Image Analysis, Natural Language Processing, Computer Vision, Forecasting, Classification And Regression Tree (CART), Supervised Learning, Machine Learning, Text Mining, Predictive Analytics, NumPy, Network Architecture, Data Processing, Data Science
- 状态:免费试用
您将获得的技能: 网络架构, 回归分析, 自然语言处理, 机器学习算法, 人工神经网络, 计算机视觉, PyTorch(机器学习库), Keras(神经网络库), 机器学习, 图像分析, 张力流, 深度学习
- 状态:免费试用
Johns Hopkins University
您将获得的技能: Responsible AI, Data Ethics, Artificial Neural Networks, Deep Learning, Machine Learning Algorithms, Reinforcement Learning, Generative AI, Debugging, Artificial Intelligence, Unsupervised Learning, Machine Learning, Computer Vision, Image Analysis, Artificial Intelligence and Machine Learning (AI/ML), Machine Learning Methods, Applied Machine Learning, Bayesian Statistics, Network Architecture, Linear Algebra, Markov Model
- 状态:新状态:免费试用
您将获得的技能: Natural Language Processing, Deep Learning, Large Language Modeling, Text Mining, Semantic Web, Generative AI, PyTorch (Machine Learning Library), Artificial Neural Networks, Python Programming, Cryptography, Generative Model Architectures, Applied Machine Learning, Machine Learning Methods, Unsupervised Learning, Probability Distribution, Machine Learning Algorithms, Algorithms
总之,以下是 10 最受欢迎的 recurrent neural network 课程
- 深度学习: DeepLearning.AI
- 序列模型: DeepLearning.AI
- 自然语言处理: DeepLearning.AI
- 序列、时间序列和预测: DeepLearning.AI
- Learning Deep Learning: Unit 1: Pearson
- 使用 PyTorch 进行深度学习:生成对抗网络: Coursera Project Network
- Fundamentals of CNNs and RNNs: Sungkyunkwan University
- Learning Deep Learning: Pearson
- Deep Learning with TensorFlow: Packt
- 使用 Keras 的深度学习和神经网络简介: IBM