筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“random forest algorithm” 的结果
- 状态:免费试用
多位教师
您将获得的技能: 数据伦理, 机器学习, 分类与回归树 (CART), 人工智能, 预测建模, 人工智能和机器学习(AI/ML), 无监督学习, NumPy, Python 程序设计, 强化学习, 随机森林算法, 应用机器学习, 决策树学习, 负责任的人工智能, Jupyter, 功能工程, 监督学习, 深度学习, 张力流, Scikit-learn (机器学习库)
- 状态:新状态:预览
您将获得的技能: Supervised Learning, Random Forest Algorithm, Applied Machine Learning, Data Processing, Classification And Regression Tree (CART), Decision Tree Learning, Feature Engineering, Machine Learning Algorithms, Predictive Modeling, Performance Testing, Data Analysis, Scikit Learn (Machine Learning Library), Python Programming
- 状态:新状态:预览
您将获得的技能: People Analytics, Data Validation, Data Processing, Workforce Management, Advanced Analytics
- 状态:新状态:免费试用
Packt
您将获得的技能: AI Personalization, Data Manipulation, Apache Spark, Tensorflow, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), PyTorch (Machine Learning Library), Natural Language Processing, AWS SageMaker, Scalability, Applied Machine Learning, Data Processing, Supervised Learning, Dimensionality Reduction, Machine Learning, Pandas (Python Package), Predictive Modeling, Python Programming, Time Series Analysis and Forecasting, Artificial Neural Networks
- 状态:免费试用
Alberta Machine Intelligence Institute
您将获得的技能: 机器学习, 数据伦理, MLOps(机器学习 Operator), 数据清理, 道德标准与行为, Machine Learning 方法, 监督学习, 分类与回归树 (CART), 产品生命周期管理, 测试数据, 机器学习算法, 数据处理, 数据质量, 功能工程, 应用机器学习, Jupyter, 项目管理, 业务运营, 负责任的人工智能, 数据验证
- 状态:新状态:预览
您将获得的技能: Unsupervised Learning, Applied Machine Learning, R Programming, Statistical Machine Learning, Machine Learning, Machine Learning Algorithms, Feature Engineering, Data Analysis, Data Processing
是什么让您今天来到 Coursera?
- 状态:新状态:免费试用
您将获得的技能: Data Science, Unsupervised Learning, Exploratory Data Analysis, Probability & Statistics, Machine Learning Algorithms, Applied Machine Learning, Classification And Regression Tree (CART), Data Analysis, Python Programming, Random Forest Algorithm, Dimensionality Reduction, Predictive Modeling, NumPy, Regression Analysis, Statistical Analysis, Data Processing, Deep Learning, Pandas (Python Package), Data Visualization, Data Manipulation
- 状态:新状态:免费试用
您将获得的技能: PySpark, Apache Spark, Classification And Regression Tree (CART), Predictive Modeling, Applied Machine Learning, Statistical Machine Learning, Unsupervised Learning, Predictive Analytics, Random Forest Algorithm, Regression Analysis, Machine Learning Algorithms, Supervised Learning, Data Pipelines
- 状态:新状态:免费试用
您将获得的技能: Unsupervised Learning, Predictive Modeling, Supervised Learning, Applied Machine Learning, Predictive Analytics, Random Forest Algorithm, Text Mining, Natural Language Processing, Machine Learning Algorithms, Artificial Intelligence, Computational Logic, Python Programming, Scikit Learn (Machine Learning Library), Data Science, Data Processing, Unstructured Data, Algorithms
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning
- 状态:免费试用
Johns Hopkins University
您将获得的技能: PyTorch (Machine Learning Library), Unsupervised Learning, Computer Vision, Machine Learning Algorithms, Applied Machine Learning, Image Analysis, Dimensionality Reduction, Supervised Learning, Reinforcement Learning, Feature Engineering, Regression Analysis, Data Cleansing, Machine Learning, Data Mining, Scikit Learn (Machine Learning Library), Statistical Machine Learning, Advanced Analytics, Deep Learning, Artificial Neural Networks, Decision Tree Learning
- 状态:免费试用
Duke University
您将获得的技能: 命令行界面, 机器学习, MLOps(机器学习 Operator), 无服务器计算, PyTorch(机器学习库), Microsoft Copilot, 人工智能和机器学习(AI/ML), 云计算解决方案, GitHub, 大数据, Devops, 网络框架, 负责任的人工智能, Docker (软件), CI/CD, 集装箱化, 拉斯特(编程语言), 张力流
总之,以下是 10 最受欢迎的 random forest algorithm 课程
- 机器学习: DeepLearning.AI
- Python: Implement & Evaluate Random Forests for ML: EDUCBA
- R: Design & Evaluate Random Forests for Attrition: EDUCBA
- Recommender Systems: Packt
- 机器学习真实世界中的算法: Alberta Machine Intelligence Institute
- R: Apply & Analyze K-Means Clustering for Unsupervised ML: EDUCBA
- Mastering Machine Learning Algorithms using Python: Packt
- PySpark: Apply & Evaluate Predictive ML Models: EDUCBA
- AI & Predictive Analytics with Python: EDUCBA
- The Nuts and Bolts of Machine Learning: Google