筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“random forest algorithm” 的结果
- 状态:免费试用
Wesleyan University
您将获得的技能: 机器学习, 分类与回归树 (CART), 探索性数据分析, 数据分析, 无监督学习, 回归分析, 监督学习, 预测建模, 随机森林算法, Python 程序设计, 统计方法, 应用机器学习, 数据挖掘, 功能工程, 统计分析, 预测分析, 决策树学习
- 状态:免费试用
您将获得的技能: Unsupervised Learning, Generative AI, Large Language Modeling, Supervised Learning, Deep Learning, Applied Machine Learning, Artificial Intelligence and Machine Learning (AI/ML), Reinforcement Learning, Statistical Machine Learning, Predictive Modeling, Machine Learning Algorithms, Artificial Neural Networks, Feature Engineering, Unstructured Data, Dimensionality Reduction, Performance Metric
- 状态:预览
Eindhoven University of Technology
您将获得的技能: 数据科学, 业务流程管理, 过程分析, 验证和确认, 流程改进, 数据验证, 业务过程, 工艺优化, 数据挖掘, 数据处理, 实时数据, 业务流程建模
- 状态:免费试用
University of Michigan
您将获得的技能: 机器学习, 回归分析, 预测建模, 无监督学习, 监督学习, Python 程序设计, 随机森林算法, 降维, 功能工程, 应用机器学习, 决策树学习, Scikit-learn (机器学习库)
- 状态:预览
Northeastern University
您将获得的技能: Supervised Learning, Statistical Machine Learning, Machine Learning Algorithms, Unsupervised Learning, PyTorch (Machine Learning Library), Applied Machine Learning, Statistical Modeling, Machine Learning, Machine Learning Software, Statistical Analysis, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), Regression Analysis, Algorithms, Predictive Modeling, Dimensionality Reduction, Complex Problem Solving
- 状态:免费试用
DeepLearning.AI
您将获得的技能: A/B 测试, 数据科学, 探索性数据分析, 统计推理, 抽样(统计), 概率分布, 统计假设检验, 统计机器学习, 概率, 统计可视化, 统计分析, 贝叶斯统计, 概率与统计, 描述性统计
- 状态:免费试用
DeepLearning.AI
您将获得的技能: Algorithm, 人工智能, 机器学习, 无监督学习, 数据伦理, 人工智能和机器学习(AI/ML), 降维, 强化学习, 应用机器学习, 监督学习, 深度学习, 异常检测
- 状态:免费试用
IBM
您将获得的技能: Algorithm, 机器学习, 数据科学, 线性代数, 数据分析, 无监督学习, NumPy, 降维, 大数据, 功能工程, 统计机器学习, 自然语言处理, 数据挖掘, 机器学习算法, Scikit-learn (机器学习库), 文本挖掘
- 状态:免费试用
您将获得的技能: Rmarkdown, Shiny (R Package), Deep Learning, Data Import/Export, Reinforcement Learning, R Programming, Ggplot2, Data Manipulation, Plotly, Applied Machine Learning, Machine Learning Algorithms, Web Scraping, Artificial Intelligence, Dimensionality Reduction, Interactive Data Visualization, Statistical Analysis, Image Analysis, PyTorch (Machine Learning Library), Artificial Neural Networks, Artificial Intelligence and Machine Learning (AI/ML)
- 状态:新状态:免费试用
您将获得的技能: Apache Spark, Keras (Neural Network Library), Deep Learning, Tensorflow, A/B Testing, Big Data, Data Ethics, Applied Machine Learning, Data Processing, Machine Learning Software, Artificial Neural Networks, Machine Learning Algorithms, Data Cleansing, Machine Learning, MLOps (Machine Learning Operations), Artificial Intelligence, Supervised Learning, Statistical Hypothesis Testing, Dimensionality Reduction, Reinforcement Learning
- 状态:新状态:预览
Northeastern University
您将获得的技能: Unsupervised Learning, Supervised Learning, Regression Analysis, Applied Machine Learning, Statistical Modeling, Machine Learning Algorithms, PyTorch (Machine Learning Library), Statistical Methods, Statistical Machine Learning, Machine Learning, Predictive Analytics, Predictive Modeling, Artificial Intelligence and Machine Learning (AI/ML), Deep Learning, Unstructured Data, Probability & Statistics, Dimensionality Reduction, Algorithms
- 状态:免费试用
University of Pennsylvania
您将获得的技能: Feature Engineering, Unsupervised Learning, Predictive Modeling, Predictive Analytics, Decision Tree Learning, Classification And Regression Tree (CART), Supervised Learning, Forecasting, Random Forest Algorithm, Scikit Learn (Machine Learning Library), Data Analysis, Regression Analysis, Machine Learning, Python Programming
总之,以下是 10 最受欢迎的 random forest algorithm 课程
- 数据分析机器学习: Wesleyan University
- AI and Machine Learning Algorithms and Techniques: Microsoft
- 流程挖掘:数据科学在行动: Eindhoven University of Technology
- Python 中的应用机器学习: University of Michigan
- Machine Learning for Engineers: Algorithms and Applications: Northeastern University
- 机器学习和数据科学的概率与统计: DeepLearning.AI
- 无监督学习、推荐器、强化学习: DeepLearning.AI
- 无监督机器学习: IBM
- R Ultimate 2024 - R for Data Science and Machine Learning: Packt
- Advanced Machine Learning, Big Data, and Deep Learning: Packt