Dynamic Programming 课程可以帮助您学习算法设计、问题解决技巧和优化策略。您可以掌握分解复杂问题、分析递归关系和实施高效解决方案的技能。许多课程都会介绍用于编码算法的 Python 和 C++ 等工具,以及支持动态编程方法的框架,使您能够应对 AI、游戏开发和 Operator 研究等领域的挑战。

您将获得的技能: Model Evaluation, Scikit Learn (Machine Learning Library), Regression Analysis, Performance Tuning, Applied Machine Learning, Machine Learning Methods, Machine Learning, Bayesian Statistics, Data Analysis
初级 · 指导项目 · 不超过 2 小时

Johns Hopkins University
您将获得的技能: Reinforcement Learning, Data-Driven Decision-Making, Markov Model, Time Series Analysis and Forecasting, Forecasting, Bayesian Statistics, Data Science, Statistical Methods, Anomaly Detection, Probability Distribution, Machine Learning Methods, Estimation, Statistical Analysis, Sampling (Statistics)
中级 · 课程 · 1-3 个月

Northeastern University
您将获得的技能: Model Evaluation, Linear Algebra, Statistical Machine Learning, Probability, Bayesian Statistics, Probability Distribution, Mathematical Modeling, Machine Learning, Applied Mathematics, Statistical Inference, Dimensionality Reduction, Algebra
混合 · 课程 · 1-4 周

University of California, Irvine
您将获得的技能: 协作, 性能指标, 组织战略, 团队管理, 开放的心态
初级 · 课程 · 1-4 周